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ABSTRACT 

A signal processing technique called Holder exponent is presented to detect the presence of a 
discontinuity and when the discontinuity occurs in a dynamic signal. Wavelet transforms are 
incorporated with the Holder exponent to capture the time varying nature of discontinuities, and 
a classification procedure is developed to quantify when changes in the Holder exponent are 
significant, The proposed Holder exponent analysis is applied to acceleration response of a 
mechanical system with a rattling internal part. The experimental results demonstrate the 
effectiveness of the Holder exponent for identifying certain types of events that introduce 
discontinuities into the measured dynamic response data. 

1 INTRODUCTION 

The goal of this study is to develop a discontinuity detection technique based on the Holder 

exponent analysis, which can minimize unnecessary user interaction and can be potentially 

automated for the development of an autonomous continuous monitoring system. This 
application of the Holder exponent is not new in the analysis of time series data. For instance, 

Struzik 2001 uses the Molder exponent to characterize the underlying structure of a system that 
produces a time series of interest. The specific application is to financial data, where outliers and 

fluctuations in the Holder exponent value reveal interesting phenomena such as market crashes. 

Using the Holder exponent for discontinuity detection has also been shown to be useful in 

interpreting images (Shekarforoush et al. 1998). The edges in an image can be thought of as 

discontinuities and their identification can be used for finding abnormalities, removing noise, or 

even compressing the size of the image, because most of the information in an image is found in 

its edges. Holder exponents have even been used in one application of health monitoring. 

Hambaba and Huff 2000 use a wavelet transform to determine the Holder exponent value of a 

gear response at different scale levels. I3y fitting an Auto Regressive Moving Average (ARMA) 
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model to the wavelet-transformed data, analysis of the residual error is used to indicate the 

presence of fatigue cracks in the gear. Peng et al. 2002 examine shaft orbits using the wavelet 

modulus maxima. The wavelet modulus is the absolute value of the wavelet transform and its 
maxima are ridges of high-valued coefficients that progress through the time-frequency plane. 

The Holder exponent values are extracted only for these maxima lines and then their distribution 
is used as input features to a neural network, which classifies the shaft orbit (including fault 

classification). These two applications are very different from the one presented in this paper. 

This paper will use the wavelet transform to obtain a time-based local Holder exponent function. 

Fluctuations in this function as demonstrated in Struzik 2001 will be useful for understanding 

and identifying outliers in the data. Hambaba and Huff 2002, on the other hand, are looking at 

the global regularity of the data at various scales and Peng et a12002 use the Holder exponent at 
specific points in time as a feature, rather than its variation in time. 

2 HOLDER EXPONENT ANALYSIS 

A Holder or Lipschitz exponent, which provides a measure of a signal’s regularity, is presented 

to detect the presence of a discontinuity and when the discontinuity occurs in a dynamic signal. 

The regularity of a signal is defined as the number of continuous derivatives that the signal 
possesses. First, the time varying nature of the Holder exponent is obtained based on a wavelet 
transform. Because discontinuity points have no continuous derivatives, these points are 
identified by locating time points where the Holder exponent value suddenly drops. Next, an 
automated classifier is developed to quantify when changes in this Holder exponent are 
significant. 

Wavelets are mathematical functions that decompose a signal into its constituent parts 

using a set of wavelet basis functions. This decomposition is very similar to Fourier transforms, 

which use dilations of sinusoids as the bases. The family of basis functions used for wavelet 

analysis is created by both dilations (scaling) and translations (in time) of a “mother wavelet”, 
thereby providing both time and frequency information about the signal being analyzed. There 

are many different functions that can be called wavelets. In this study, the Morlet wavelet is used 

for the family of basis functions. The resulting coefficients from the wavelet transform of a time 

domain signal, such as the acceleration response of a structure, can be represented in a two- 
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dimensional time-scale map. Examination of the modulus of the wavelet transform shows that 

many of these coefficients are very small in magnitude. Large magnitude components, termed 

modulus maxima, will be present at time points where the most change in the signal has 
occurred. Jumps or singularities in the signal can therefore be identified by the presence of 

modulus maxima at specific time points in the wavelet map. Singularities are distinguishable 

from noise by the presence of modulus maxima at all of the scale levels for a given time point. 

Noise will produce maxima at the finer scales, but will not persist to the coarser scales. 

Mallat and Hwang 1992 first introduced a method for detecting singularities in a signal by 

examining the evolution of the maxima of the modulus of the wavelet transform across the 
scales. The decay of this maxima line can then be used to determine the regularity of the signal at 

a given time point. A less time consuming alternative to the extraction of the maxima line is to 

simply look at the decay of the wavelet modulus across the scales at a given time point. Points of 

large change in the signal will have large coefficients at all the different scales, thus having little 
decay. The measure of this decay is the Holder exponent of the signal at a given time point. 

The Holder regularity is defined as follows. Assume that a signalf(t) can be approximated 

locally at to by a polynomial of the form (Stmzik 2001): 

f ( t )  = c, + c, ( t  - to)  + .. . -I- c, (t - to)" + CI t - to l a  
= P, ( t  - to)  + c/ t -to l a  

where P, is a polynomial of order n and C is a coefficient. The term associated with the 

exponent a can be thought of as the residual that remains after fitting a polynomial of order n to 

the signal, or as the part of the signal that does not fit into an n+l term approximation. The local 

regularity of a function at to can then characterized by this "Holder" exponent: 

In order to detect discontinuities, a transform is needed that ignores the polynomial part of the 

signal, A wavelet transform that has n-vanishing moments is able to ignore polynomials up to 
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order n. Transformation of Equation (2) using a wavelet with at least n vanishing moments then 

provides a method for extracting the values of the Holder exponent in time: 

where Wf(u,s) is the wavelet transform at time translation u and scale s. The wavelet transform of 

the polynomial is zero and so what remains is a relationship between the wavelet transform of 

f ( t )  and the error between the polynomial andf(t), which relates to the regularity of the function. 

When a complex wavelet such as the Morlet wavelet is used, the resulting coefficients are also 

complex. Therefore, the magnitude of the modulus of the wavelet transform, called the 

scalogram, must be used to find the Holder exponent. 

The steps for calculating the Holder exponent in time are as follows. First, take the wavelet 

transform of the given signal and take the absolute value of the resulting coefficients to obtain 

the wavelet transform modulus: 

Arrange the coefficients in a two-dimensional time-scale matrix. One dimension of the time- 

scale matrix (u) represents a different time point in the signal, and the other dimension denotes a 
different frequency scale (s). Take the first column, which represents the frequency spectrum of 

the signal at the first time point, and plot the log of it versus the scales, s, at which the wavelet 
transform was calculated. This procedure can be shown mathematically by taking the log of each 

side of Equation (3): 

Ignoring the offset due to the coefficient C, the slope m is then the decay of the wavelet modulus 

across its scales. Negating the slope will give the decay versus the frequencies of the transform 

rather than the scales, due to the inverse relationship between scale and frequency. The Holder 

exponent a is then simply the slope rn. This is the Holder exponent for the first time point in the 
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signal. To find the Holder exponent at all time points, repeat this process for each time point of 

the wavelet modulus matrix. 

Once the exponent a is calculated as a function of time, the measurement of the regularity 

can be used to detect discontinuities in a signal. The easiest way to identify a discontinuity is by 

looking for a distinct downward jump in the regularity versus time plot. A discontinuous point 
should have a Holder exponent of zero, but resolution limitations of the wavelet transform will 

result in slightly different values. So, identifying areas where your Holder exponent dips from 

positive values towards zero, or below, will identify when the discontinuities in the signal occur. 
In this paper, an automated classifier is created to detect the presence of discontinuities in the 

signals by identifying drops in the Holder exponent in time. The previous investigation by the 

authors indicates that looking at the depth of a drop in the Holder exponent is an effective way of 

assessing a discontinuity (Robertson et al. 2002). 

A threshold is set such that any drops that exceed this threshold are labeled as 
discontinuities. The threshold value is set using a portion of the data known to contain no 
discontinuities, and this portion of data is termed “normal” data. The procedure starts by finding 

all the local maxima and minima of the Holder exponents in time for the normal signal. Then, 
drops in the Holder exponent values are calculated as the difference between a given minimum 

and the maximum immediately preceding it. Next, the threshold is determined by finding the 

largest drop under “normal” conditions and amplifying this number by a factor of 1.5. The 
procedure for determining the depths of the drops in the Holder exponent function is then 
repeated on the remaining data of interest. If any of the drops are 50% deeper than the biggest 
drop in the normal data, the time point is identified as a discontinuity location. It should be noted 

that this amplification factor is application specific, and this threshold can be altered to be more 

or less restrictive, based on the needs of the application. For the example presented in this paper, 

the value of 1.5, however, serves our purpose well. In some instances, the dips in the Holder 

value are jagged with small oscillations. This property makes the estimation of the dip’s depth a 

difficult task because the algorithm relies on comparing the local maxima and minima, which 
will now also appear in the small fluctuations in the dip itself. Therefore, it was decided to add 

the option of smoothing the Holder exponent values before performing the discontinuity 

detection algorithm by applying a low-pass moving average (MA) filter. 
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3 APPLICATION 

The effectiveness of the Holder exponent for detection discontinuities in signals is demonstrated 

using the acceleration response of a mechanical structure subjected to a harmonic base 

excitation. Applications of the proposed Holder exponent analysis to other structures can be 
found in Robertson et a1 2002 and Sohn et a1 2002. The defense nature of the test structure 

precludes a detailed description of its geometry or material properties. Instead a structure that is 

conceptually similar is schematically shown in Figure 1. The exterior container of the system is 

horizontally excited at 18 Hz, and the nonsymmetrical bumpers attached to two interior side 

walls of the container cause the internal mass to exhibit a rattle during one portion of the 

harmonic excitation. 

Figure 2 shows the response of the structure at three different excitation levels measured 
by accelerometers mounted on the outer structure in the in-axis and off-axis directions. The 

placement and orientations of the in-axis and off-axis accelerometers are shown in Figure 1. The 

rattle produced by these impacts is evident in the sensor measurements that are off-axis from the 

excitation. The short oscillations of increased magnitude in these measurements are indicative of 
the rattle. For the lowest excitation level, the rattling is occurring near 5.33 and 10.89 
milliseconds. Similar rattling can be observed for the intermediate and the highest excitation 
levels near 1.34, 6.88, and 12.39 milliseconds, and 0.25, 5.80, and 11.33 milliseconds, 
respectively. These same oscillations are not readily apparent in the in-axis data, particularly if 
one does not have the off-axis measurements for reference. The examination of the data from all 

three input levels shows that one can only see the rattle clearly in the off-axis measurements, and 
the lowest excitation level had the lowest signal to noise ratio, thus making observation of the 

rattle more difficult. The purpose of this application is to determine whether the presented 
technique can be used to identify the time when the rattle is occurring by looking only at the in- 
axis response measurements. For the acceleration signals analyzed in this example, 4096 

acceleration time points are recorded for 0.125 seconds resulting in a sampling frequency of 

3276 Hz. 

First, a wavelet transform (scalogram) is applied to the in-axis response of all three levels 

as shown in Figure 3. A complex-valued Morlet wavelet with length 16 is used for the 

scalogram, and 256 scales are used between 0 Hz to the Nyquist frequency (1638 Hz). A larger 
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width wavelet function increases the overall frequency resolution of the transform while 
decreasing the time resolution. The coarse time resolution acts as a smoothing filter decreasing 

the amount of spurious oscillation in the Holder exponent and bringing out changes associated 

with true discontinuities. To minimize the end effect of the wavelet transform, a continuous 

wavelet transform with mirroring is used in this example. The program for this mirrored wavelet 

computation is available at www.irccyn.ec-nantes.fr/FracLab/Fraclab.html as part of Fractal 

Analysis Software, copyrighted by INRIA. The time locations of the rattling phenomena are 
clearly with the naked eye in Figure 3. 

The next step is to transfer this visual interpretation of the images to a more automated 

identification procedure. For this purpose, the Holder exponent was extracted from the 

scalogram. Figure 4 shows the Holder exponent obtained from the previous scalogram in Figure 

3. To smooth the plot of the Holder exponent, averaging with a moving window size of 8 was 

applied. The singularities associated with the rattle are clearly visible in this plot at each time 
they occur during the oscillatory cycles. Though the dips in the Holder exponent shown in Figure 

4 are fairly apparent to the naked eye, identification of them using an automated procedure is 
more difficult. The discontinuity classification algorithm described in the previous section was 

used to identify the locations of the rattle. The first 1000 time points of the lowest level response 
was used as the “normal data” to establish the threshold value for discontinuity detection. The 

threshold value was then set at 150% of the largest dip in the normal data. Filtering using the 

moving average method effectively removed the spurious oscillations in the dips and allowed for 
a successful detection of the discontinuities as shown by the circles in Figure 4. 

4 CONCULSIONS 

In this study, a Holder exponent analysis is successfully applied to the acceleration response of a 

mechanical system subjected ta a harmonic excitation with a rattling internal part. Furthermore, a 

discontinuity classifier is developed to automate the identification procedure of discontinuities. 

The simplicity and data driven nature of the proposed approach makes it very attractive for 

embedding the discontinuity algorithm into a digital signal processing chip or field 
programmable gate array, which can be an integrated part of an intelligent sensor unit with 
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micro-electromechanical system (MEMS) sensors, a wireless telemetry, on-board computation 

power and a battery. 
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